Argonne National Laboratory Center for Nanoscale Materials U.S. Department of Energy

Upcoming Seminars

Date

Title

March 20, 2014
3:00 p.m.
Bldg. 440, A105-106

"Template Direct Assembly of Bio-based Materials for Advanced Applications," by Handan Acar, Iowa State University, hosted by Tijana Rajh

Abstract: Engineering at the nanoscale has been an active area of science and technology over the last decades. Inspired by nature, synthesis of functional inorganic materials using synthetic organic templates constitutes will be the theme of the first part of this talk.

Developing an organic template-directed synthesis approach for inorganic nanomaterial synthesis was our goal. For this purpose, an amyloid-like peptide sequence capable of self-assembling into nanofibers under convenient conditions was designed and decorated with functional groups showing a relatively high affinity to special inorganic ions, which are present at the periphery of the one-dimensional peptide nanofibers. These chemical groups facilitated the deposition of targeted inorganic monomers onto the nanofibers, yielding one-dimensional organic-inorganic core-shell nanostructures. The physical and chemical properties of the synthesized peptide nanofibers and inorganic nanostructures were characterized by both qualitative and quantitative methods. The results obtained in these studies encourage use of a new bottom-up synthesis approach.

In the second part of the talk, a new concept of transient materials for bioelectronics and biomedical applications will be presented. The precise control over transiency of polymer composites based on biocompatible and biodegradable polymers is demonstrated. These transient materials can be used in the fabrication of bioelectronic devices that are capable of dissolving in their surrounding environment with no traceable remains and maintain full functionality until triggered for degradation. Further, precise control over the degradation of these biodegradable polymers serve as a matrix for encapsulation of susceptible bioactive materials, such as proteins and growth factors. These nontoxic degradable polymers are suitable platforms for slow delivery of bioactive materials with tunable mechanical properties to match that of the host living tissue.

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003

U.S. Department of Energy Office of Science | UChicago Argonne LLC
Privacy & Security Notice | Contact Us | Site Map

The Center for Nanoscale Materials is an Office of Science User Facility operated for
the U.S.Department of Energy Office of Science by Argonne National Laboratory